Posts

Showing posts from August, 2022

Carbohydrate groups

Image
  Carbohydrate groups are present only on the outer surface of the plasma membrane and are attached to proteins, forming glycoproteins, or lipids, forming glycolipids. These carbohydrate chains may consist of 2–60 monosaccharide units and can be either straight or branched. Along with peripheral proteins, carbohydrates form specialized sites on the cell surface that allow cells to recognize each other (one of the core functional requirements noted above in "cellular membranes").

Protein

Image
  The plasma membranes also contain certain types of proteins. A membrane protein is a protein molecule that is attached to, or associated with, the membrane of a cell or an organelle. Membrane proteins can be put into two groups based on how the protein is associated with the membrane. Integral membrane proteins are permanently embedded within the plasma membrane. They have a range of important functions. Such functions include channeling or transporting molecules across the membrane. Other integral proteins act as cell receptors. Integral membrane proteins can be classified according to their relationship with the bilayer

Phospholipids

Image
  A phospholipid is a lipid that contains a phosphate group and is a major component of cell membranes. A phospholipid consists of a hydrophilic (water-loving) head and hydrophobic (water-fearing) tail (see figure below). The phospholipid is essentially a triglyceride in which a fatty acid has been replaced by a phosphate group of some sort. Phospholipid are amphiphilic molecules with hydrophobic fatty acid chains and hydrophilic moieties. They occur naturally in all living organisms as the major components of cell membranes. Various phospholipid classes with different polar moieties are found in nature. pH greatly affects the association of the polar moieties in phospholipids. When dispersed in water, phospholipids hydrate forming lamellar or hexagonal phases, a behavior which is related to the functions of cell membranes.  

Fluid mosaic model

Image
  The explanation proposed by Singer and Nicolson is called the fluid mosaic model. The model has evolved somewhat over time, but it still best accounts for the structure and functions of the plasma membrane as we now understand them. The fluid mosaic model describes the structure of the plasma membrane as a mosaic of components—including phospholipids, cholesterol, proteins, and carbohydrates—that gives the membrane a fluid character. Plasma membranes range from 5 to 10 nm in thickness. For comparison, human red blood cells, visible via light microscopy, are approximately 8 µm wide, or approximately 1,000 times wider than a plasma membrane. The membrane does look a bit like a sandwich. He principal components of a plasma membrane are lipids, proteins, and carbohydrates. The lipids include phospholipids and cholesterol Proteins either float in the bilayer or are attached to one side or the other of it. Carbohydrate chains are attached to the proteins and lipids on the outside surfa...

Plasma membrane

Image
  The plasma membrane, which is also called the cell membrane, has many functions, but the most basic one is to define the borders of the cell and keep the cell functional. The plasma membrane is selectively permeable. This means that the membrane allows some materials to freely enter or leave the cell, while other materials cannot move freely, but require the use of a specialized structure, and occasionally, even energy investment for crossing. The existence of the plasma membrane was identified in the 1890s, and its chemical components were identified in 1915. The principal components identified at that time were lipids and proteins. The first widely accepted model of the plasma membrane’s structure was proposed in 1935 by Hugh Davson and James Danielli; it was based on the “railroad track” appearance of the plasma membrane in early electron micrographs. They theorized that the structure of the plasma membrane resembles a sandwich, with protein being analogous to the bread, and l...
  NIPUNI NILAKSHIKA FERNANDO EU/IS/2019/BS/69 BS2269